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Abstract 

Within the past few years computer- 
ized sequential algorithms have been de- 
veloped and used to search out and dis- 
play non -additive relationships implicit 
in survey data. The objective is the 
display of information relevant to the 
problem of how to specify a multiple 
classification analysis model purporting 
to explain the phenomenon in question. 
Experimentation with one such algorithm 
(AID) has led to a classification of sim- 
ple additive and interactive multivari- 
ate models related to elementary Boolean 
operators. These models are described 
and illustrated; extensions to the AID 
algorithm to facilitate specification of 
complex models, for dealing with covari- 
ate models arising from "crucial" vari- 
ables or over -time survey data and for 
imposing symmetry restrictions are dis- 
cussed. Preliminary experimentation 
with the improved algorithm is reported. 

Keywords: Survey, Multivariate ana- 
lysis, model specification, statistical 
interaction, computer program, predic- 
tion, analysis of variance, multiple 
regression, multiple classification ana- 
lysis, data analysis strategy, simula- 
tion. 

The task of interpreting a mass of 
non -experimental data, such as that gen- 
erated by modern cross- sectional and 
longitudinal survey methods has remained 
a difficult one. Two reasons for this 
appear to stand out as particularly wor- 
thy of examination. One is that the sta- 
tistical methods used by most data ana- 
lysts are oriented toward deductive test- 
ing of isolated hypotheses rather than 
toward the more frequent task of extrac- 
tion of information from data and the de- 
velopment of models on an inductive ba- 
sis. In addition, the full power of "se- 
cond generation" computing equipment has 
not yet been utilized (let alone "third 
generation "); it has the ability to ex- 
tend the scope of the analyst's logic as 
well as perform computations rapidly for 
him. 

The present paper is a modest at- 
tempt to surmount these obstacles by ex- 
tending the idea of coupling the calcu- 
lating power of modern computing equip- 
ment to a formal sequential algorithm, 
the objective of which is the generation 
of information about the data. In par- 
ticular, our concern is with obtaining 
summary information organized for use by 
the analyst in the inductive stages of 
his research; that is, in the stages of 
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model formulation and development. The 
objective of the procedure is the dis- 
play of information relevant to the 
problem of how to formulate or specify a 

model purporting to explain the phenome- 
non in question. 

One frequently appearing and con- 
crete form taken by this general speci- 
fication problem is the question of 
choosing and of specifying the form of 
the terms to be included in a least 
squares multiple classification equation 
(MCA). Such an equation is commonly 
used as a statistical model representing 
the simultaneous and direct explanatory 
effects of a correlated set of presumed 
causal factors on a single dependent 
variable. It is of the form 

Yijk... = + ai + b + eijk...(1) 

where 

Yijk = the score (on the dependent 
variable) of individual k, who 
falls in category i of predic- 
tor A and into category j of 

predictor B, etc.; 

= the grand mean of the depen- 
dent variable; 

ai = the "effect" of membership in 

the i -th category of predictor 
A expressed as a deviation 
from the grand mean and adjust- 
ed for the intercorrelations 
of predictor A with the other 
terms in the equation; 

bj = the corresponding "effect" as- 
sociated with predictor B; 

e = the error term for the k -th 

Any given term in the equation, say 
may represent the effect of a two- wayjor 
higher -order interaction term between 
explanatory factors notlotherwise repre- 
sented in the equation. 

1 
For a more detailed exposition of 
this basic technique, see Andrews, 
Morgan and Sonquist (1967). A simple 
n -way analysis of variance model is 
not used because the number of obser- 
vations in the cells of an n -way 
cross -classification of the predic- 
tors are not equal or proportional. 
This condition ordinarily occurs in 
survey or other non -experimental da- 
ta in which there are non -zero cor- 
relations between explanatory charac- 
teristics. 



It is this problem of choosing 
terms to be included in the equation to 
which we address ourselves. We shall 
review some of the previous work in 
this area, outline several improvements 
in an algorithm proposed several years 
ago, and present an illustration of the 
improved technique. 

Previous Work in This Area 

In a previous paper before this 
group, two of the present authors re- 
ported preliminary results from a new 
method of data analysis. We had un- 
dertaken to design, program, test, and 
document a large scale computer pro- 
gram. The algorithm incorporated into 
the program was aimed at extracting in- 
formation bearing on the need to intro- 
duce interaction terms into a multi- 
variate analysis in which a set of cor- 
related predictor variables were to be 
related simultaneously to a criterion. 
Starting from a consideration of some 
of the problems inherent in applying 
multivariate statistical techniques 
(particularly multiple regression) to 
cross -sectional survey data, we had 
concluded that the use of Multiple 
Classification Analysis (MCA) permitted 
adequate handling of most data charac- 
terized by intercorrelated predictors, 
nominal scales and non -linearities, but 
could not deal with interaction ef- 
fects. The computerized procedure 
that was developed at that time attack- 
ed the problem of locating interaction 
terms by asking a different kind of 
statistical question of the data than 
is iTplíed by the immediate choice of 
MCA. 

The technique (termed Automatic 
Interaction Detection [AID]) employs a 

sequential decision procedure to di- 
vide the sample into a mutually exclu- 
sive set of sub- groups through a se- 
ries of successive binary partitions, 
each formed by combining observations 
which are alike on certain characteris- 
tics. At each stage every observation 
is a member of exactly one such sub- 
group. These groups are formed so 
that at each stage in the process their 
means account for more of the total sum 
of squares (i.e., reduce the error sum 
of squares more) than the means of any 
other pair of such sub -groups obtainable 
by the algorithm. Thus, at each stage 

1 Preliminary results are reported 
in Morgan and Sonquist (1963b). 
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in the branching process, the set of 
groups developed at that point repre- 
sents, according to the criteria of the 
model, the best currently available 
scheme for predicting the dependent vari- 
able from the information available. 
The branching process terminates when 
all existing sub -groups are either so 
homogeneous that the desired accuracy 
has been achieved, or no variable can be 
found which will enable an improvement 
in prediction sufficient to warrant its 
use. 

An examination of the statistics 
computed during the tree -like partition- 
ing process provides evidence in support 
of, or against, the introduction of ad- 
ditivity assumptions, as well as pro- 
viding some indication of what kind of 
interaction term should be generated, 
if required. 

Experimentation with the method on 
data which were constructed to violate 
additivity assumptions revealed that a- 
symmetric tree structures were associ- 
ated with the existence of predictors 
which interacted. On the other hand, 
additivity was associated with symmetric 
structures. 

Interactive data were also found to 

be associated with the presence of dif- 
ferential changes in explanatory power 
displayed by corresponding predictors in 
different branches of the tree. Additi- 
vity was associated with similar changes 
in explanatory power. 

Inspection of the profiles of mean 
values defining the effects of a given 
predictor in various branches of the 
tree also provided evidence of the ap- 
propriateness of making additivity as- 
sumptions. Similarity of effect pro- 
files of a predictor in various parts 
of the tree structure implies additivity; 
but interactive data produce incongru- 
ent profiles. 

AID was first proposed as a substi- 
tute for MCA. However, experience with 
the method in actual use and knowledge 
gained through experimentation with 
known data structures led to the de- 
velopment and publication of a strategy 
for using the AID and MCA techniques 

2 Details of the process, flow charts, 
the computer program, sample input 
and output, formulas, nine illustra- 
tive analyses and recommendations for 
interpreting the output of the pro- 
gram are reported in Sonquist and 

3 
Morgan (1964). 
This experimentation is reported in 
Sonquist (1969a). 



jointly, to supplement each other.1 In 
addition it appeared that substantial 
gaines in analytic power might be made 
from implementing a somewhat more2so- 
phisticated sequential algorithm. 

Since its original implementation 
in a large scale program (Sonquist and 
Morgan, 1964) the algorithm has been 
translated by others to run on a number 
of other computers (Campbell, 1965; 
Aptakin, 1965; Land, 1965; Kay, 1966; 
Marks, 1966). Versions of the AID al- 
gorithm were also adapted to European 
equipment (Biervert, 1966, Arpi, 1967). 
The methods have been used by economists 
(e.g., Snowbarger, 1967; Gensemer, 
Lean and Neenan, 1965), by sociologists 
(Ross and Bang, 1965), by political 
scientists, (e.g., Sarlvik, 1968), by 
marketing researchers (e.g., Arpi, 
1967), by engineers (e.g., Carlson, 
1967), and by psychologists, (Caplan 
et al, 1966). 

Revisions the Algorithm 

Experience in using the original 
over a period of five years, 

discussions with others who have used 
it, and experimentation with contrived 
data have all led to a rather large col- 
lection of proposed improvements in the 
techniques. Most of these are minor 
from an analytic standpoint, such 
obtaining output in improved form. 
They are obtained simply as a byproduct 
of the reprogramming necessary to in- 
corporate the major changes proposed 
below. 

The major revisions include extend- 
ing the original algorithm to deal with 
covariance as well as a profile of 
means, providing for the imposition of 
an optional premium for symmetric par- 
titioning, and extending the sophisti- 

1 
The strategy developed was suggested 
in Andrews, Morgan and Sonquist 
(1967), and then elaborated further 
by Sonquist (1969a, 1969b). 

2 
See Sonquist (1967). 

3 Some of the programming revisions 
might include the use of Fortran IV 
for compatibility with various manu- 
facturers' equipment; a trichotomous 
partition option; improved input 
flexibility with regard to both data 
and control language; additional 
output including predictor summary 
tables; and improved variable trans- 
formation capabilities. 
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cation of the search algorithm to in- 
clude a "look- ahead" to several suc- 
cessive partitions. In the latter case, 
the mechanism would not proceed blindly, 
always trying to maximize the explained 
variation in the current partition, but, 
like a chess player, would explore the 
possibility of sacrificing present pay- 
off in favor of even greater gains from 
subsequent "moves." It would also at- 
tempt to provide the simplicity and par- 
simony of a symmetric model where the 
data appeared to warrant its use. Each 
of the revisions is discussed below in 
some detail. 

Covariance Search Routine 

There are many situations in econo- 
mic, sociological and psychological re- 
search where a multivariate analysis is 

required, but where there exists one 
dominant explanatory or control vari- 
able. The explanatory factor in ques- 
tion may be of particular importance to 
some theoretical edifice, it may be 
subject to control more easily than 
other factors, or it may simply have 
been measured much more readily and re- 
liably than the others. Where the data 
come from an experiment and not a sur- 
vey, the obvious procedure is covariance 
analysis. 

However, with non -orthogonal survey 
data, one may want to search out sub- 
groups in which there are different re- 
lationships between the dependent vari- 
able and this dominant explanatory vari- 
able. For instance, in much analysis of 
cross -section survey data, the economist 
is often interested in the effect of 
personal or family income on some behav- 
ioral variable, and on whether that "in- 
come effect" (as represented by the 
slope of the regression of the behavioral 
variable on income) varies with other 
circumstances. The answer to this ques- 
tion will help to determine whether it 

is necessary to disaggregate the data in 
models used for forecasting, and the op- 
timal way to do it. 

Sociologists and psychologists of- 
ten face similar problems in which the 
purpose of the investigation requires 
isolating the effect of a particular var- 
iable under a wide variety of combina- 
tions of circumstances. For instance, 
intelligence, alienation and authori- 
tarianism have each been the subject of 
repeated investigations in which the ob- 
ject has been to relate that particular 
factor to specific consequences in such 
a way as to specify the form of the re- 
lationship under various conditions and 
for particular types of people'. 

Another illustration is in the ana- 
lysis of changes taking place over time. 



The initial value of a phenomenon under 
study clearly affects its value measured 
at a subsequent time. This is why the 
residuals from the regression of its 
current (t2) value on its initial (t1) 
value are often used as a measure of 

1 
change, instead of the raw increments. 
However, this "initial value" effect 
might not be the same for all sub- 
groups in the population. If, then, a 
single equation were to be fitted, a 
downward bias would be exerted on the 
correlations between change and those 
factors thought to be responsible for 
it. Thus, when residualizing a vari- 
able for study, a search should be made 
to determine if this initial value ef- 
fect is homogeneous throughout the pop- 
ulation. 

For all these reasons, a variant 
of the earlier sequential data analysis 
algorithm has been developed in which 
the criterion for sequential subdivi- 
sion of a sample -is changed from the 
sum of squares explained by two sub- 
group means (instead of one pooled 
mean) to the sum of squares explained 
by two simple sub -group regressions 
(instead of one simple regression of 
the pooled data). The search algorithm 
otherwise has basically the same frame- 
work: each group potentially to be di- 
vided is examined using all feasible 
partitions base on each explanatory 
characteristic. The difference is 
that the quantity maximized when a group 
is divided into sub -groups is the vari- 
ation explained by the regression of the 
dependent variable on the covariate 
within each sub -group. If the two best 
fitting regression lines differ as to 
intercept or slope, then the unexplained 
variation would be reduced, and the 
split with the largest difference be- 
tween the two regressions would reduce 
it the most. 

Given this conceptualization of the 
problem, a partition may be chosen so as 
to maximize any one of three quantities. 
One may evaluate reductions in unex- 
plained variation due to differences be- 
tween means, differences in regression 

2 

For a thorough discussion of this 
problem see Lord (1967). 

If the order of the (k) classes of 
the explanatory characteristic is 
maintained, there are only (k -1) ways 
of forming two groups on the basis of 
that predictor. However, if one re- 
orders them on the basis of the 
means of the dependent variable there 
are many more possible ways of form- 
ing the two sub -groups. 
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lines, or both taken together. The ori- 
ginal AID algorithm sought to maximize 
the sum of squares explained by means of 
the sub -groups resulting from parti- 
tion of the "parent" group, i.e., it 
maximized the expression 

N11 + - NT (2) 

The rationale for this is easily seen in 
Table 1. 

It can be seen from Table 2 that 
a 

second quantity could also be maximized. 
This is the expression 

(N1- 1)r128 + (N2- 1)r22sy22- (N- 1)r2sy2 

(3) 

This is the sum of squares of the two re- 
gression estimates around the two g5oup 
means resultinf from the partition. It 
reduces to: 

2 lEE(Y-) (X-51 

i=1 

[E(Y-)(X-X)]2 

(4) 

A third quantity which may be maximized 
is obtained from the sum of these two 
and would represent the effect of both 
the variable used in the partition and 
the X covariate. The variation explained 
by the sub -group means and that explain- 
ed by the regression are both maximized. 
This expression is 

+ (N1-1)r12sy12 N2Y2 + (N21)r2sy2 

- NY2 - (N-1)r2sy2 (5) 

The existing algorithm has also been 
modified to permit an examination of the 
effects of one crucial categorical pre- 
dictor in various parts of the sample 
without permitting it to be used in the 
partitioning process. Permitting the 
analyst to retain the ability to con- 
ceptualize the effects of the crucial 
variable in terms of slopes and inter- 
cepts as well as the ability to use pro- 
files of sub -group means gives a desir- 
able simplicity. 

1 Computational formulas are, of course, 
somewhat different and are not given 
here. In maximizing any of these ex- 
pressions the last term is constant 
over all possii -le partitions and can 
be ikolored. See Walker and Law (1953) 
op 210 -216. 

2 
See Walker and Law (1953), pp 242 -244. 



TABLE 1. 

Analysis of Variance for Differences in Means 

Source of Variation d. f. Sum of Squares Mean Square 

Observations around k N 
grand mean N -1 SST 

j =1 i =1 

k 

s2 

Between group means k -1 = SSB 
j =1 

k N. 

MSB 

Within Groups N -k = SSW 
j =1 i =1 

MSW 

The covariate problem is illus- 
trated below. Owning a home (as op- 
posed to renting, etc.) is related 
not only to income, but to age, family 
size, and place of residence (urbani- 
zation). More important, a very 
large fraction of older people outside 
the large urban areas own a home re- 
gardless of their income; i.e., in- 
come differences have no effect at 
all on home ownership in this group. 
However, among young families with 
children, small increases in income 
appear to lead to substantial in 
creases in the probability that the 
family will soon own its home. Fur- 
thermore, among young people with no 
children at all, home ownership is 
rare at any income level. Clearly, 
economic projections of home owner- 
ship need to be based not just on ag- 
gregate statistics of income increas- 
es, but on who received them. 

The effective use of survey data 
to shed light on such problems re- 
quires concentrating attention on the 
differential relation of income to eco- 
nomic activity as well as studying its 
effect in the aggregate. 

These details are further illus- 
trated by an examination of Figure 1. 
In the total sample the regression of 
Y on X1 is 

Y al + b1X1 + u1 
(6) 

However, when the sample is split on 
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variable X into 2 groups, one with 
X2 = 1,2 and the other X2 = 3,4, for 
the latter group this regression is 

Y a3 + b3X1 + u3 (7) 

and if, in addition, this group is split 
on variable X4, then for = 4 or 5, 

the regression of Y on X1 

Y = a7 + b7X1 + u7. (8) 

This is illustrated in Figure 1. 

If we also have 

and 

and 

2 + Eu3 (9) 

2 > (Eu42 + u52 Eu2 ) (10) 

Eu32 > (Eu52 + Eu72) 
(11) 

it is clear that the various effects of X1 
on Y as revealed by the differences in the 
slopes (bi) and the intercepts (ai) are 
associated with the joint occurrence of 
the conditions denoted by the indicated 
values of variables X2, X and X4. Thus 
one must devise a means searching 
various sample sub -groups in order to 
learn whether these differential effects 
exist and what forms they take, under ade- 
quate constraints to reduce the probabili- 
ty of detecting differences which are spur- 
ious. It is this problem which lends it- 
self to solution via a formal sequential 
decision process programmed to run on a 



TABLE 2. 

Analysis of Variance for Regression 

Source-of Variation D. F. Sum of Squares Mean Square 

Regression estimates 
around N 

1 (i 
i =1 

(N- 1)r2sy2 

Observations around 
regression estimates N 

N-2 
N 

i =1 
-2 (1 -r2)s2 

Observations around 
N -1 

ÇN 
(Yi )2 

i =1 

sy2 

Where r2 = 
[E(X-%) (Y-Y)] 

(X-1)2E(Y4)2 

s 
2 E(Y-)2 

y N-1 

+ 

b 
E (X-X) (Y-T) 

E(X-7)2 
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Total Sample 

Y=a1+b1X1+ u 

X2 1,2 

Y=a2+b2X1+ u2 

X2 = 3,4 

a3+b3X1+ u3 

X3=1 X3=2 X4 = 1,2,3 X4 = 4,5 

Y=a4+b4X1+ u4 =a5 +b5X1+ u5 a6+b6X1+ u6 a7+b7X1+ u7 

Figure 1. Differential Effects of X1 on Y1. 
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TABLE 3. 

Logical Models for Two Dichotomous Predictors and 
a Trichotomous Dependent Variable 

Configuration AB 

AB 

Y=0 Y=1 Y=2 

1 3 4 5 6 

Row 

1 Aa CS CS 
2 1 0 0 CS BICOND (M)BICOND 
3 2 0 0 CS (M)BICOND BICOND 
4 0 1 0 CS A (M)CS 
5 1 1 0 A SC R 
6 2 1 0 (M)CS R (M)BICOND 
7 0 2 0 CS (M)CS A 
8 1 2 0 (M)CS A (M)SC 
9 2 2 0 A (M) SC SC 

10 1 CS A (M)CS 
11 1 0 1 A SC R 
12 2 0 1 (M)CS R (M)BICOND 
13 0 1 1 EXOR SC A 
14 1 1 1 SC A CS 
15 2 1 1 A CS BICOND 
16 0 2 1 (M)EXOR R (M)SC 
17 1 2 1 R CS A 
18 2 2 1 (M)SC A SC 
19 0 0 2 CS (M)CS A 
20 1 0 2 (M)CS A (M)SC 
21 2 0 2 A (M)SC SC 

22 0 1 2 (M)EXOR R (M)SC 

23 1 1 2 R CS A 
24 2 1 2 (M)SC A SC 

25 0 2 2 EXOR (M)EXOR SC 

26 1 2 2 (M)EXOR EXOR SC 

27 2 2 2 SC SC A 

a 
A means additive; CS means cumulative upwardly and substitutive down- 
wardly; SC is the inverse of CS; (M) means "modified;" BICOND means 
"biconditional;" R means reversal and EXOR refers to "exclusive or ". 
Table adapted from Sonquist (1969a). 
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large scale computer. 

Extending the Search Algorithm - A 
Multi -step Look -ahead 

Experimentation with the original 
algorithm to determine its behavior 
under known conditions was carried out 
using contrived data. This process 
of working out tests under a variety 
of different conditions led to the de- 
velopment of a typology of multivari- 
ate models. From this viewpoint, 
multivariate interactive and additive 
AID and MCA models could be viewed as 
eighty -one variants of the same basic 
structure, which, in its simplest form 
(two dichotomous predictors and a tri- 
chotomous dependent variable) could 
be defined almost entirely in terms 
of the fundamental operators of Bool- 
ean algebra, (see Table 3) , Elimin- 
ating permutations and inverses re- 
duces the number of models to sren 
non- trivial ones, (see Table 5) . 

This typology also delineated ex- 
actly certain limitations of the ori- 
ginal AID algorithm, some of which 
could not have been noticed earlier. 
For instance, while the published pro- 
cedure was found to be capable of deal- 
ing adequately with many two -way inter- 
actions, others were identified as be- 
ing difficult for it to deal with (Son - 
quist and Morgan, 1964). These were 
seen to consist of interactive rela- 
tions characterized by consistency, i.e., 
by balance or symmetry. One such ex- 
ample is the biconditional model, illus- 
trated in Table 5. 

Table 4. 

Occurrence of Effect "C" Associated 
with the Joint Occurrence or Joint Ab- 
sence of Two Causal Factors, A and B. 

Condition 
"A" B 

Condition "B" 
Not -B 

A 

Not -A 

C 

Not -C 

Not -C 

C 

1 A more extensive discussion of these 
models is given in Sonquist (1969a) 

2 
The eighth is a constant in all cells. 
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Although the frequency with which 
variants of this model actually oc- 
cur in real data is not known, it is 
notable that at least one realiza- 
tion has received considerable at- 
tention in the recent sociological 
literature, thy concept of status 
inconsistency. The problem of de- 
veloping analysis techniques to deal 
with this class of models is of im- 
portance for economic, educational 
and psychological research as well 
as for sociology. 

It can be seen that the earlier 
sequential partitioning algorithm 
which examines only the "zero- order" 
effects of A and B separately could 
not discover the consistency effect 
in these data. There are really 
two A "effects" and they cancel each 
other out in the total group. More- 
over, the additive assumptions im- 
plied by the choice of Multiple 
Classification Analysis would also 

to conceal the real state of 
the world. 

However, the extended AID algo- 
rithm partitions the sample tenta- 
tively, first on one causal variable 
and then on the other (as well as 
making tentative partitions on other 
variables). The actual partition is 
made so as to maximize the effects 
of several successive partitions. 
This makes it possible first to re- 
veal a consistency effect to the ana- 
lyst by means of appropriate output, 
then to make an appropriate parti- 
tion, and finally, to continue with 
the rest of the sequential search 
procedure. 

In general, such a two -split 
scanning algorithm appears capable of 
providing information adequate for 
the analyst to identify the two -way 
interactions existent in the data. 
It also appears able to provide 
leads or clues to the existence of 
three -way interactions. This is seen 
to be a simple extension of the way 
in which the present algorithm pro- 
vides clues to the existence of two - 
way interactions. Thus, an algorithm 
which examines the cross -classifica- 

1 For an example, see Blalock (1966). 



TABLE 5 

Seven Logical Models for Two Dichotomous Predictors 
and a Trichotomous Dependent Variable 

Key Cell Averages 

H high cell mean 
L low cell mean 
M middle cell mean 

4. Additive 

1. Uni- 
variate 

B1 B2 5. Biconditional 

A L H 
1 

A2 L L L H 

6. Modified 
Biconditional 

2. Cumu- H M 
lative L 

L L L H 

7. Reversal 

3. Modi- 
fied H M H 
Cumula- 
tive 

L L L M 



tion of p predictors simultaneously 
appears able to reveal terms compos- 
ed of p raw variables regardless of 
the symmetry of the term. However, 
such an algorithm also appears capa- 
ble of revealing a term involving p 

+ 1 raw variables if the term is 
asymmetric. 

For instance, if we have the 
three variable asymmetric model, "if 
A and B and C, then Y 0, otherwise 
Y = 4," the algorithm using a two - 
split strategy would produce the se- 
quence of partitions illustrated in 
Figure 2. 

Of course the amount of comput- 
ing required to search out combina- 
tions of three or more variables 
increases as an exponential func- 
tion of the number of variables 
considered simultaneously. Hence 
constraints have to be put on the pro- 
cess to permit the eliminations of 
unpromising leads and thus the exa- 
mination of the subsequent parti- 
tions. However, this does not ap- 
pear necessary in the three variable 
case. 

Extending the Search Algorithm - 

Premium for Symmetry 

The original algorithm repre- 
sented a step in the direction of 
specifying a statistical model so 
it fits the data rather closely. 
The introduction of the look -ahead 
principle moves further in this di- 
rection. However, it can be antici- 
pated that increasing the "wiggling" 
ability of a model being fitted will 
also increase the probability of the 
analyst basing his theoretical model 
on data largely reflecting idiosyncra- 
tic characteristics of the sample un- 
der investigation. Hence additional 
constraints are needed that would 
tend to guard the analyst against 
over -fitting his model. One such con- 
straint is a premium for symmetry. 
Thus, when a look -ahead is employed a 

capability can be provided for in- 
creasing the probability that if a 

given predictor is used to make 
partition in a given way on one branch 
of a partition sequence it will also 
tend to be used similarly in the paral- 
lel branch. This principle of con- 
straint toward symmetry is illustrated 
in Figure 3. 

Once groups four and five have been 
created using variable B the symmetry 
question arises. The proposed partition 
of group two, the "Not -A's" into new 
groups could be accomplished using, say, 
variables B, C, or D, but not variables 

E, F, or G, since the latter show insuf- 
ficient explanatory power. In the previ- 
ous algorithm, the choice of a variable 
on which to base a partition would have 
been to compare B, C, and D and then 
choose the one capable of producing the 

greatest reduction in the unexplained sum 
of squares. The present proposal would 
alter the algorithm to require that if C 

or D were chosen over B, it would have 
to achieve a certain ratio of explanatory 
power when compared with that resulting 
from a partition based on B identical to 

the one already performed in the paral- 
lel group. The comparison ratio would 
be supplied by the analyst at the time 
of execution of the program. Setting 
the ratio to 1.0 would simply cause the 
regular algorithm to take effect. Set- 
ting it larger than 1.0 would bias the 
algorithm toward symmetry; setting it at 

less than 1.0 would tend to prevent sym- 
metry. For instance, a value of 1.25 

would require that a non -symmetric par- 
tition explain 25 percent more varia- 
tion than a symmetric partition in 9r- 
der to be actually used in a split. 

Preliminary Examination of the New 
Algorithm 

As a preliminary investigation into 
the power of the new algorithm with re- 
spect to the look -ahead and covariance 
options, tests were made using all com- 
binations of the seven logical models 
of Table 5 applied to both meats and 
slopes (see Tables 6a and 6b). 

1 

2 

3 

In the case of dichotomous predictors 
the identical partition is the only 
possible one. This is not the case 
where the variable has three or more 
classes. We focus on total symmetry, 
i.e., forming identical sub -groups 
based on the same predictor. 

Appropriate values of the symmetry 
premium for actual use are yet to be 
worked out by experimentation. 

For each of the means model in Table 
5a, a dependent variable was generat- 
ed, Yi = a + = 1,...,100, where 
(a) represents the mean of a given cell 
(25 observations were generated for 
each call) and is a random error 
e (N(0,.5). the ei remains con - 
stant for all 7 models. A covariate 
x N(0,1), i 1, ...,100, was al- 

generated, and for all 49 combin- 
ations of means and slopes the depen- 
dent variable yi = a + bx + e , i = 

1, ...,100, was formed, were ta) and 
(b) are the mean and slope values for 
the appropriate cell. The means - 
alone model, y = a + was also eval- 
uated, making the total number of ex- 
periments fifty -six. 
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Figure 2. ABC Implies Y Q, Else Y = 4 
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Not - C 
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Figure 3. Symmetric Partition. 
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TABLE 6a 

7 Logical Models Applied to Means 

1. Univariate 

B2 

2. Cumulative 3. Modified 
Cumulative 

A1 10 10 10 10 5 

A2 

6. Modified 
4. Additive 5. Biconditional Biconditional 7. Reversal 

10 5 10 10 5 10 5 

5 10 10 5 

TABLE 6b 

7 Logical Models Applied to Slopes of Y on X 

1. Univariate 2. Cumulative 3. Modified 
Cumulative 

B1 B2 

Al 1 1 1 -1 1 o 

A2 -1 -1 -1 -1 -1 -1 

6. Modified 
4. Additive 5. Biconditional Biconditional 7. Reversal 

1 1 -1 1 1 

-1 -1 1 -1 1 -1 
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Since this was a preliminary study, 
"masking" factors such as intercor- 
relations and noise in thr predic- 
tors were not considered. However, 
to provide a test of the algorithm's 
ability to pick out explanatory fac- 
tors from a noisy background two 
uncorrelated dichotomous dummy 
variables were generated along 
with the two variables defining 
the model. Each experiment was 
made using the two real factors and 
the two noise factors as predictors, 
utilizing the "look- ahead" with two 
splits (creation of three groups). 

For the means -alone cases, the 
sum of squares between the three ter- 
minal groups was maximized, i.e., from 
Table 1, 

3 

E Ni - NY2 
i=1 

(12) 

For the means and slopes cases, 
the quantity maximized between the 
three goups was the sum of squares 
resulting from both the reduction in 
means and regression, i.e., from 
Table 2, 

3 

Nii2 + (Ni-1)ri2syi 

- TNY2 + (N- 1)r2sy (13) 

As was expected,JJJJ with the excep- 
tion of the biconditional model, the 
look -ahead with two splits yielded re- 
sults similar to those from no look - 
ahead; the final groups in both cases 
were identical, but occasionally the 
look -ahead would lead to splits on the 
variables in reverse order from a 
parallel analysis using no look -ahead. 

The biconditional -means model 
still presented some problems, however. 
For the no -slope version of the model 
as well as the univariate, cumulative, 
modified cumulative, additive and re- 
verse slope models, the algorithm 
with no look -ahead could make incorrect 
splits; that is, it could use the dum- 
my variables by mistake. it is signi- 
ficant, however, that the look -ahead 
identified the models correctly. How- 
ever, it occasionally made subsequent 
partitions on the dummy variables. 
This proved to be capable of remedy by 
an adjustment of the reducibility cri- 

1 Further work is to include tests 
with predictors of varying levels 
of intercorrelation and skewness 
as well as the assessment of the 
algorithm activity to deal with 
correlated "noise." 
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terca controlling the termination 
of the partitioning process. Pro- 
per choice of this criterion still 
permits legitimate partitions to 
take place, but prevents subsequent 
spurious ones. For the no -look- 
ahead case, this fraction p ap- 
parently should be in the range 
.005 < P < .008. For the one - 
step look -ahead (two splits) this 
fraction apparently has a lower 
bound of P1 .016. The look -ahead 
apparently does the job it was de- 
signed for. 

Our findings from this initial 
experimentation with covariance mo- 
dels suggest that the differences in 
means may be much more powerful in 
determining what split is to be made 
than are differences in slopes. In 
fact, in most of the cases where (a) 
the two groups had no differences in 
means and (b) one of these groups 
had slope zero, the two regressions 
resulting from tentative partitions 
were not sufficient to meet the re- 
ducibility criterion with, or without, 
a look -ahead. For instance, in the 
example given below in Table 7, the 
algorithm would split the sample on 
variable A, but would not split ei- 
ther of the resulting groups. 

Table 7. 

An Example of a Remaining Problem 

A1 

A2 

Means 

B1 B2 

10 A1 

A2 

Slopes 

B1 B2 

1 

-1 

1 
The criterion is the fraction of the 
total sum of squares from the total 
input sample that a split (or se- 
quence of splits in the look -ahead 
case) must explain in order for the 
split actually to be made. The maxi- 
mized function [equation (12) or (13)] 
must be greater than p times TSS. 
The behavior of the algorithm is in 
keeping with previous results from 
the original algorithm. For p < 

.005, there is a tendency to split 
on the dummy variables after the cor- 
rect splits have been made. For pi 
< .016 the look -ahead would occa- 
sionally split on a dummy variable 
even before making the correct splits. 



While this result is not entirely 
unexpected, it may imply that maxi- 
mizing differences in means alone 
or in regression slopes alone may 
be a more powerful toollthan the 
combination of the two. Further 
experimentation with these models 
using only the slopes is obvious- 
ly indicated. 

Significance of These Findings 

This extended algorithm rep- 
resents a continuation of our at- 
tempts to develop better methods 
for adequate handling of the prob- 
lem inherent in applying multivar- 
iate statistical techniques in the 
analysis of cross -sectional survey 
data with large numbers of cases 
(1000 or more). The covariance ca- 
pability is relevant for the analy- 
sis of panel as well as one -time 
cross- sectional data. The increas- 
ing volume of survey and other non- 
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